AQA AZ CHEMISTRY ISOMERISM ~ CARBONYLS ## **ACYLATION** | 1 | Este | rs have many important commercial uses such as solvents and artificial flavourings in foods. | | |---|------|--|-----| | | | rs can be prepared in several ways including the reactions of alcohols with carboxylic acids, anhydrides, acyl chlorides and other esters. | | | | (a) | Ethyl butanoate is used as a pineapple flavouring in sweets and cakes. | | | | | Write an equation for the preparation of ethyl butanoate from an acid and an alcohol. | | | | | Give a catalyst used for the reaction. | (4) | | | (b) | Butyl ethanoate is used as a solvent in the pharmaceutical industry. | (-) | | | | Write an equation for the preparation of butyl ethanoate from an acid anhydride and an alcohol. | | | | | | | Page 1 of 22 (3) | | | (5) | |-----|---|-----| | (d) | The ester shown below occurs in vegetable oils. Write an equation to show the formation of biodiesel from this ester. | (3) | | | $CH_{2}OOCC_{17}H_{31}$ $CHOOCC_{17}H_{33}$ $CH_{23}OOCC_{17}H_{29}$ | | | | | | | | | | | | | | | | | (3) | | | | | Name and outline a mechanism for the reaction of $\mathrm{CH_{3}COCI}$ with $\mathrm{CH_{3}OH}$ to form an ester. (c) | Draw the repeating unit of the polyester Terylene that is made from benzene-
1,4-dicarboxylic acid and ethane-1,2-diol. | |--| | Although Terylene is biodegradeable, it is preferable to recycle objects made from Terylene. | | Give one advantage and one disadvantage of recycling objects made from Terylene. | | | | | | | | | | | | | | | | (4) | | (Total 19 marks) | (e) (a) Name and outline a mechanism for the reaction of $CH_3CH_2NH_2$ with CH_3CH_2COCI Name the amide formed. (6) | Outline a three-step synthesis of CH ₃ CH ₂ NH ₂ starting from methane. Your first step should involve the formation of CH ₃ CI | |---| | In your answer, identify the product of the second step and give the reagents and conditions for each step. | | Equations and mechanisms are not required. | (6) | | (Total 12 marks) | | | Haloalkanes such as $\mathrm{CH_{3}Cl}$ are used in organic synthesis. (b) 3 Synthetic dyes can be manufactured starting from compounds such as 4-nitrophenylamine. A synthesis of 4-nitrophenylamine starting from phenylamine is shown below. (a) An equation for formation of *N*-phenylethanamide in Step 1 of the synthesis is shown below. $$2C_6H_5NH_2 + CH_3COCI \rightarrow C_6H_5NHCOCH_3 + C_6H_5NH_3CI$$ N-phenylethanamide - (i) Calculate the % atom economy for the production of N-phenylethanamide ($M_r = 135.0$). - (ii) In a process where 10.0 kg of phenylamine are used, the yield of *N*-phenylethanamide obtained is 5.38 kg. Calculate the percentage yield of *N*-phenylethanamide. (iii) Comment on your answers to parts (i) and (ii) with reference to the commercial viability of the process. (7) (b) Name and outline a mechanism for the reaction in Step 1. (5) (c) The mechanism of Step 2 involves attack by an electrophile. Write an equation showing the formation of the electrophile. Outline a mechanism for the reaction of this electrophile with benzene. (4) (Total 16 marks) 4 (a) Write an equation for the formation of methyl propanoate, CH₃CH₂COOCH₃, from methanol and propanoic acid. (1) | (b) | Name and outline a mechanism for the reaction between methanol and propanoyl chloride to form methyl propanoate. | | | | | |-----|--|---|-----|--|--| | | Nan | ne of mechanism | | | | | | Med | chanism | (5) | | | | (c) | - | panoic anhydride could be used instead of propanoyl chloride in the preparation of | | | | | | meth | nyl propanoate from methanol. Draw the structure of propanoic anhydride. | (1) | | | | (d) | (i) | Give one advantage of the use of propanoyl chloride instead of propanoic acid in the | , | | | | . , | ., | laboratory preparation of methyl propanoate from methanol. | (ii) | Give one advantage of the use of propanoic anhydride instead of propanoyl chloride in the industrial manufacture of methyl propanoate from methanol. | (2) | | | - (e) An ester contains a benzene ring. The mass spectrum of this ester shows a molecular ion peak at m/z = 136. |
 |
 | | |------|------|--| | | | | (ii) Draw **two** possible structures for this ester. Deduce the molecular formula of this ester. (3) (Total 12 marks) **5** Consider the sequence of reactions below. (i) (a) Name and outline a mechanism for Reaction 1. Name of mechanism Mechanism | | (b) | (i) | Name compound Q | | |---|-----|-------|--|------------| | | | (ii) | The molecular formula of $\bf Q$ is C_4H_7NO . Draw the structure of the isomer of $\bf Q$ which shows geometrical isomerism and is formed by the reaction of ammonia with an acyl chloride. | | | | (c) | | w the structure of the main organic product formed in each case when R reacts arately with the following substances: | (3) | | | | (i) | methanol in the presence of a few drops of concentrated sulphuric acid; | | | | | (ii) | acidified potassium dichromate(VI); | | | | | (iii) | concentrated sulphuric acid in an elimination reaction. | | | 6 | (a) | Nar | (Total 11 mark neethe compound $(CH_3)_2NH$ | (3)
(s) | | | | | | (1) | | (b) | (CH ₃) ₂ NH can be formed by the reaction of an excess of CH ₃ NH ₂ with CH ₃ Br. Name and outline a mechanism for this reaction. | | |-----|---|-------------| | | Name of mechanism | | | | Mechanism | | | | | | | | | | | | | | | | | (5) | | (c) | Name the type of compound produced when a large excess of CH ₃ Br reacts with CH ₃ NH ₂ Give a use for this type of compound. | () | | | Type of compound | | | | Use | (2) | | (d) | Draw the structures of the two compounds formed in the reaction of CH ₃ NH ₂ with ethanoic anhydride. | (Total 10 ma | (2)
rks) | | | | | | | | | | (a) | Name and outline a mechanism for the reaction between propanoyl chloride, CH ₃ CH ₂ COCI, and methylamine, CH ₃ NH ₂ | | | | Draw the structure of the organic product. | (C) | | (b) | Benzene reacts with propanoyl chloride in the presence of aluminium chloride. Write | (6) | | (1) | equations to show the role of aluminium chloride as a catalyst in this reaction. Outline a mechanism for this reaction of benzene. | | | | medianism for this reaction of perizene. | (5) | - (c) Write an equation for the reaction of propanoyl chloride with water. An excess of water is added to 1.48 g of propanoyl chloride. Aqueous sodium hydroxide is then added from a burette to the resulting solution. - Calculate the volume of $0.42~\text{mol}~\text{dm}^{-3}$ aqueous sodium hydroxide needed to react exactly with the mixture formed. (5) (Total 16 marks)