Mark schemes

(a) electrical

chemical

light

(b) 25% or 0.25

allow 1 mark for correct substitution, i.e. 50 ÷ 200 provided no subsequent step shown

or

answers of 25 with a unit or 0.25 with a unit gain 1 mark
answers of 25 without a unit or 0.25% gain 1 mark

(c) the information board can be used anywhere it is needed

2

Geothermal

Hydroelectric

Nuclear

Uses energy from falling water

Uses energy from inside the Earth

Is unpredictable

Produces dangerous waste

allow 1 mark for each correct line

if more than one line goes from an energy source then all lines from that energy source are wrong

3

(a) (i) changing the distance may / will affect / change the voltmeter reading

accept so only one independent variable

accept distance affects speed of wind (turbine)

accept it is a control variable

accept to give valid results

fair test is insufficient

to make the results accurate is insufficient
(ii) any sensible practical suggestions, eg

• so fan reaches a steady / full speed
 accept power for speed

• so wind (turbine) reaches a steady / full speed

• so voltmeter reaches / gives a steady reading
 accept accurate or valid reading a correct reading is insufficient
do not accept precise reading

(iii) as the number of blades increases so does the (voltmeter) reading / output / voltage

 number of blades affects the reading / output is insufficient

 further relevant detail, eg

• voltmeter increase is greatest up to 3 blades

• voltmeter reading hardly changes with 4, 5 or 6 blades
 accept does not change between 4 and 6 blades

• increase is directly proportional up to 3 blades

• it reaches a limit
 accept does not change after 4 / 5 blades

• a numerical example giving two pairs of numbers, eg 2 blades = 0.6V, 4 blades = 1V

(b) C

reason scores only if C is chosen

wind speed / strength varies

 accept wind is not constant / reliable

(a) \[E = 15000 \times 36\]

\[E = 540000\]

\[E = 540 \text{ (kJ)}\]

an answer of 540 (kJ) scores 3 marks
(b) (the motor in) scooter B has a higher power therefore
(because both motors have the same efficiency) scooter B will have a greater kinetic energy

(c) the battery in scooter B has a greater store of chemical energy

(d) energy transferred = power × time
allow \(E = P \times t \)

(e) \(20 \times 60 \)

\[E = 1200 \times 700 \]

\[E = 840000 \text{ (J)} \]

an answer of 840000 (J) scores 3 marks

(a) (i) temperature (increase) and time switched on are directly proportional

accept the idea of equal increases in time giving equal increases in temperature

answers such as:

• as time increases, temperature increases
• positive correlation
• linear relationship
• temperature and time are proportional

score 1 mark

(ii) any one from:

“it” refers to the metal block

• energy transfer (from the block) to the surroundings
accept lost for transfer
accept air for surrounding

• (some) energy used to warm the heater / thermometer (itself)
accept takes time for heater to warm up

• (metal) block is not insulated

1
(iii) 15 000
allow 1 mark for correct substitution, ie 50 \times 300 provided no subsequent step shown

(b) lead
reason only scores if lead is chosen

needs least energy to raise temperature by 1°C
accept needs less energy to heat it (by the same amount)
lowest specific heat capacity is insufficient

(a) (i) electrical
correct order only

kinetic

sound

(ii) transferred into surroundings / atmosphere
accept warms the surroundings
allow released into the environment
becomes heat or sound is insufficient

(b) 0.7 / 70%
an answer of 70 without % or with the wrong unit or 0.7 with a unit gains 1 mark

7 (a) efficiency = \frac{\text{useful output energy transfer}}{\text{total input energy transfer}} \times 100

allow efficiency = \frac{\text{useful output}}{\text{total input}} \times 100
(b) \(\text{efficiency} = \frac{1.2 \times 10^{18}}{1.3 \times 10^{18}} \times 100 \)

= 0.92
or
92 (%)

allow an answer that rounds to 0.92

or
92 (%)

ignore units
an answer of 0.92 or 92 (%) scores 2 marks

(c) at a high potential difference and a low current

(d) \(\text{power} = \frac{\text{energy transferred}}{\text{time}} \)

allow \(P = \frac{E}{t} \)

(e) \(8000 = \frac{E}{1200} \)

if a conversion of 8000 has been attempted, this mark can be awarded

\((E =) 1200 \times 8000 \)

if a conversion of 8000 has been attempted, this mark can be awarded

\((E =) 9600000 \text{ (kJ)} \)

this answer only
an answer of 9600000 (kJ) scores 3 marks
any four from:

(environmental advantages)
- renewable / sustainable (energy source)
- conserves fossil fuels
- no release of pollutant gases e.g. sulfur dioxide
- no release of greenhouse gases
 allow does not release carbon dioxide
- does not contribute to global warming

(environmental disadvantages)
- noise pollution
- visual pollution
- bird kill
- not always windy so more use of fossil fuel power stations
 ignore destruction of habitat
 max 3 marks if only refers to advantages or disadvantages
 ignore references to cost

(a) (i) 150

(ii) transferred to the surroundings by heating
 reference to sound negates mark

(iii) 0.75
 450 / 600 gains 1 mark
 accept 75% for 2 marks
 maximum of 1 mark awarded if a unit is given

(iv) 20 (s)
 correct answer with or without working gains 2 marks
 correct substitution of 600 / 30 gains 1 mark

(b) (i) to avoid bias

(ii) use less power and last longer

1 LED costs £16, 40 filament bulbs cost £80
or
filament costs (5 times) more in energy consumption
(iii) any **one** from:

- availability of bulbs
- colour output
- temperature of bulb surface

(a) conduction

(b) (i) there is a bigger temperature difference between the water and the surrounding air

 accept the water is hottest / hotter

 so the transfer of energy (from hot water) is faster

 accept heat for energy

 ignore temperature falls the fastest

(ii) 120

 allow 1 mark for converting kJ to J correctly, ie 4 032 000

 or

 correctly calculating temperature fall as 8°C

 or

 allow 2 marks for correct substitution, ie 4 032 000 = m × 4200 × 8

 answers of 0.12, 19.2 or 16.6 gain 2 marks

 answers of 0.019 or 0.017 gain 1 mark

(iii) water stays hot for longer

 so heater is on for less time

 accept so less energy needed to heat water

 so cost of the jacket is soon recovered from) lower energy costs / bills

 accept short payback time
(a) any two from:

- cost per kWh is lower (than all other energy resources)
 - allow it is cheaper
 - ignore fuel cost
 - ignore energy released per kg of nuclear fuel
- infrastructure for nuclear power already exists
 - accept cost of setting up renewable energy resources is high
 - accept many renewable power stations would be needed to replace one nuclear power station
 - accept (France in 2011 already had a) surplus of nuclear energy, so less need to develop more renewable capacity for increased demand in the future
 - accept France benefits economically from selling electricity
- more reliable (than renewable energy resources)
 - accept (nuclear) fuel is readily available
 - ignore destruction of habitats for renewables

(b) any two from:

- non-renewable
 - allow nuclear fuel is running out
- high decommissioning costs
 - accept high commissioning costs
- produces radioactive / nuclear waste
 - allow waste has a long half-life
- long start-up time
- nuclear accidents have widespread implications
 - allow for nuclear accident a named nuclear accident
 - eg Fukushima, Chernobyl
 - ignore visual pollution

(c) 0.48 (kW)

- allow 1 mark for correct substitution
- ie $0.15 = P / 3.2$
- an answer of 480 W gains 2 marks
- an answer of 48 or 480 scores 1 mark
(d) the higher the efficiency, the higher the cost (per m2 to manufacture)

 accept a specific numerical example

 more electricity could be generated for the same (manufacturing) cost using lower
 efficiency solar panels

 or

 (reducing the cost) allows more solar panels to be bought

 accept a specific numerical example