(a) field

correct order only

1

current

1

force

accept motion

accept thrust

1

(b) (i) arrow pointing vertically downwards

1

(ii) increase current / p.d.

accept voltage for p.d.

1

increase strength of magnetic field

accept move poles closer together

1

(iii) reverse (poles of) magnets

1

reverse battery / current

1

(c) (i) 1.5 or 150%

\[
\text{efficiency} = \frac{120}{80} \times 100
\]

gains 1 mark

an answer of 1.5 % or 150

gains 1 mark

2

(ii) efficiency greater than 100%

or

output is greater than input

or

output should be 40 (W)

1

(iii) recorded time much shorter than actual time

accept timer started too late

accept timer stopped too soon

1

12
Nickel

(b) **Either**
 - put iron filings
 - on a piece of paper
 - over the magnet

or
 - use (plotting) compass(es) (1)
 - around the magnet (1)
 - with the needle showing the direction (1)

(c) all points plotted correctly
 \[2 \text{ points plotted correctly for 1 mark}\]

 correctly drawn line of best fit
 \[allow \ ecf \ from \ incorrectly \ drawn \ points\]

(d) as the number of turns increases so does the amount of paper clips picked up
 \[linear / directly proportional\]
 \[allow \ doubling \ the \ number \ of \ turns \ doubles \ the \ number \ of \ paper \ clips \ picked \ up\]

(e) 32
 \[allow \ number \ correctly \ extrapolated \ from \ student's \ graph\]

[11]
(a) (i) increase

(ii) A and B and B and C

both required for the mark either order

(iii) any two from:

- size of nail or nail material
 allow (same) nail

- current
 allow (same) cell *allow p.d.*

 same amount of electricity is insufficient

- (size of) paper clip

- length of wire
 accept type / thickness of wire

(b) 4

B picks up the same number as C, so this electromagnet would pick up the same number as A or direction of current does not affect the strength of the electromagnet

allow it has got the same number of turns as A

(c) 2

allow 1 or 3
4 (a) (i) Iron

(ii) 50

ignore references to current

reason only scores if 50 chosen

there are more turns on the secondary coil (than the primary coil)

accept it is a step-up transformer

not more coils

(b) (i) 200

(ii) any one from:

- Lighter
- smaller
- use very little power / current (when switched on with no load / phone attached).

accept more efficient

do not accept uses no power / current

a disadvantage of a traditional transformer is insufficient on its own

5 (a) induced

(b) any two from:

- use the same (strength) magnet

 same size magnet is insufficient

- the speed that the magnet is moved

 accept movement of the magnet

- the area of the turns

 same type / length of wire is insufficient

- the magnetic pole being moved towards the coil (of wire).

 use the same voltmeter is insufficient

(c) (i) voltmeter misread

or

number of turns miscounted

result misread is insufficient

human error is insufficient

allow the magnet was moved at a (slightly) different speed (into the coil) than for the other readings

allow spacing between the turns had changed
(ii) line of best fit passing through all points except (100, 0.034)

\[\text{line does not need to go back to origin} \]

(d) any one from:
- can re-check data / readings.
 \[\text{accept can go back to data} \]
- can take more readings (in a given time)
 \[\text{can store data is insufficient} \]
- easier to identify maximum value.
 \[\text{automatically records data is insufficient} \]
 \[\text{accept is more accurate} \]
 \[\text{accept eliminates human error} \]

(a) north (pole)

\[\text{accept N} \]

north (pole)

\[\text{both needed for mark} \]

(b) reverses

\[\text{accept changes direction} \]

(c) (i) first finger:
(direction of) (magnetic) field

\[\text{second finger:} \]
(direction of) (conventional) current

(ii) into (plane of the) paper

(iii) less current in wire

\[\text{accept less current / voltage / more resistance / thinner wire} \]

weaker field

\[\text{allow weaker magnets / magnets further apart} \]
\[\text{do not accept smaller magnets} \]

rotation of magnets (so) field is no longer perpendicular to wire

(d) (i) reverse one of the magnets

\[\text{do not accept there are no numbers on the scale} \]
(ii) systematic or zero error
 accept all current values will be too big
 accept it does not return to zero
 accept it does not start at zero

(a) \(\text{Fe}_2\text{O}_3 + 3 \text{ CO} \rightarrow 2\text{Fe} + 3 \text{ CO}_2 \)
 \textit{correct formulae of reactants}

 \textit{correct formulae of products}

 \textit{correct balancing}

(b) iron loses oxygen – reduction
 carbon gains oxygen – oxidation

(c) any four from:
 - resources for manufacture are limited
 - recycling reduces the use of resources
 - reduces energy consumption in extraction / manufacture
 - reduces waste from processing and extraction
 - reduces environmental impact of extraction

(d) field lines going through and around coil
 \textit{correct directional arrows}
(e) any two from:

1 mark for suggestion, 1 mark for correctly linked explanation

• use many coils or tight coils or long wire (1)
• to give a strong magnetic field for lifting heavy objects (1)

explanation must be correctly linked to the suggestion to gain the mark

or

• add an iron core
• to increase field circuit for lifting

or

• include a switch in circuit
• so can drop / pick up cars

(a) (i) (closing the switch makes) a current (through the wire)

1 (the current flowing) creates a magnetic field (around the wire)

1 this field interacts with the permanent magnetic field

accept links / crosses attracts / repels is insufficient

1

(ii) arrow drawn showing upwards force on XY

judge vertical by eye the arrow must be on or close to the wire XY

1

(iii) motor

accept catapult

1

(b) (i) the wire moves up and down

or

the wire vibrates

back and forth or side to side is insufficient for vibrate

1

(ii) the force (continually) changes direction (from upwards to downwards, on the wire)

accept the direction of the magnetic field (of the wire) changes

1 [7]